
Supplementary information0

S1 System Specifications1

More detailed information on system performance and the methods used to measure key metrics2

are summarized here.3

S1.1 Magnification and Field of View4

The theoretical magnification for the FiLM-Scope is given by:5

M = f/F = 14.64mm/100mm = 0.1464 (S1)

where f is the focal length of the array lenses and F is the focal length of the primary lens.6

The true magnification value is less than this theoretical value, because the lenses were placed7

slightly outside of a true 4-f configuration in order to increase the working distance of the system.8

Additionally, the magnification varies slightly between individual cameras, because each array9

lens is focused individually. Magnification for each lens was measured by acquiring an image of10

a graph target at the most in-focus plane for the central camera, then finding the distance in pixels11

between the graph vertices. The magnification reported here is an average over the field-of-view12

for each camera.13

The magnification varied between 0.1205 and 0.1220, with a mean value of 0.1212 and a14

standard deviation of 0.0004. Given our sensor size of 4096 x 3120 pixels, and pixel pitch of 1.115

µm, this corresponds to an average field-of-view of 37.2 x 28.3 mm.16
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S1.2 Lateral Resolution17

Using λ = 530 nm for wavelength of light, and a theoretical NA = tan−1(d/2
F
) = 0.028 (d =18

5.7 mm is the diameter of the array lenses, and F = 100 mm is the focal length of the primary19

lens), the theoretical diffraction limited resolution of the system is given by:20

ϕlat,diff = λ/(2 ·NA) = 9.3 µm (S2)

To measure the on-axis lateral resolution in each camera, we imaged a resolution target at 1321

distances from the primary lens along the optical axis of the system, over a range of 6 mm. At22

each plane, we took the full-width at half maximum (FWHM) of the line-spread function (LSF)23

for both a vertical and horizontal line, and repeated for all 48 cameras (Figure S1b). We then found24

the minimum FWHM for each camera (Figure S1c).25

The results are summarized in Figure S1d. The resolution for a camera is related to its position26

in the camera array, with cameras in the middle of the array exhibiting the finest resolution. For27

many cameras, resolution differed between the x and y dimensions. For instance, cameras in the28

center left of the array had fine resolution in the x (vertical) dimension, and worse resolution in29

the y (horizontal) dimension. Cameras in the top center of the array had fine resolution in the y30

(horizontal) dimension, and poor resolution in the x (vertical) dimension. The resolution averaged31

between both dimensions varied between 19 µm and 30.4 µm, with an average value of 23.43 µm32

and a standard deviation of 2.57 µm. These results suggest that the performance of the FiLM-33

Scope could be improved by re-designing the primary lens to achieve more uniform resolution34

among the cameras.35
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Fig S1 Lateral resolution plots. a) Snapshot of USAF resolution target. On-axis, we are able to resolve down to
group 5, element 5 in the highlighted camera. b) Left: Example image of the horizontal and vertical lines used to
measure FWHM resolution of system. Right: Plotted edge-spread and line-spread functions from the blue and red
insets of the left image. This was repeated for all 48 cameras at 13 axial planes. The vertical and horizontal FWHM
values were averaged to create the plot in c). c) Average FWHM plots for all 48 cameras. The red, blue, and green
insets highlight these plots for 3 cameras. From these plots, we can see there is sometimes a difference between the
vertical and horizontal resolution. Additionally, the location of the optimal focal plane varies between cameras. d) On-
axis resolution values for the 48 cameras. Top: FWHM values in the horizontal direction. Middle: FWHM values in
the vertical direction. Bottom: average of vertical and horizontal FWHM values. From this, we can see that resolution
is dependent on a camera’s location in the array.

S1.3 Axial Resolution36

To quantify axial resolution, we use the definition from Guo (2019),22 which is the minimum axial37

distance between two laterally aligned points to resolve them as separate points in a given camera.38
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Each camera has its own axial resolution, and the axial resolution for the system can be reported39

as the best resolution amongst the cameras.40

For a given camera i, the theoretical axial resolution is given by:41

ϕax,i = ϕlat,i/ tan(θi) (S3)

where ϕlat is the lateral resolution and θi is the angle between the system optical axis and the42

chief ray for camera i (See Figure 2a, in the main text).43

To estimate the axial resolution for each camera, we first found θi in both the x and y dimen-44

sions for each camera by using the calibration results, Si(p) (see Methods section). If px and py45

are here the central pixel values for camera i, Mi is the magnification, and ρ = 1.1 µm is the pixel46

pitch, we have:47

θi = tan−1(Si(px, py) · ρ/Mi) (S4)

Figure S2a, shows these values in the x and y directions, as well as their magnitudes.48

From there, we can find the geometric and diffraction limited axial resolution using the lateral49

resolution values from S1.2. The axial resolution values for all cameras are shown in Figure S2b -50

c. We calculated the geometric resolution as 49 µm and the diffraction limited resolution as51

83 µm. The large discrepancy between the geometric and diffraction limited resolutions is due to52

the poor lateral resolution in the outer-most cameras of the array. These cameras have the largest53

values for θi and can thus theoretically provide the best axial resolution, but this is not fully realized54

due to their poor lateral resolution.55
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Fig S2 Axial Resolution a) Center angle of acceptance, θi, for the 48 cameras. Left: vertical direction, middle:
horizontal direction, right: magnitude. b) Comparison of geometric and diffraction limited axial resolution. For
the center cameras, the two values are similar. However, for the edge cameras, the diffraction limited resolution is
noticeably worse than the geometric limited resolution. This is due to the worsening lateral resolution in the cameras
at the edge of the array. c) Diffraction limited axial resolution for the 48 cameras.

S1.4 Depth of Field56

The theoretical depth-of-field (DOF) for the FiLM-Scope can be given by:57

DOFtheor =
(n2 −NA2)

NA2
· λ =

1− 0.0282

0.0282
· 530 nm = 675 µm (S5)

To measure the DOF, we used the lateral FWHM resolution values computed in S1.2. We then58
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fit a normal curve to the 1/FWHM values (Figure S3a) and identified the DOF from that curve.59

Figure S3b shows those values for 46 of the 48 cameras (for the remaining two, the normal curve60

could not be accurately fit, so those values are left blank). We consider two values for DOF: the61

estimated DOF from the fit curve, as well as the “usable” DOF. Because the working distance of62

the FiLM-Scope is very short, the DOF for some cameras extends inside the glass surface (for63

instance, camera 20 in Figure S3). Thus, the DOF that can be practically used is more limited. We64

refer to the portion of the DOF outside the glass surface of the lens as the “usable DOF”.65

The values of the full DOF varied bewteen 2.65 mm and 5.65 mm, with a mean value of 3.6866

mm and standard deviation of 0.61 mm. The usable DOF varied between 1.37 mm and 4.4567

mm, with a mean value of 3.13 mm and standard deviation of 0.85 mm.68

It is worth noting that while the resolution is be worse outside the reported DOF, we are still69

able to achieve reasonable 3D results well outside this range. We show accurate results up to about70

1 cm depth ranges.71

S1.5 Aberrations72

The effective FOV of the FiLM-Scope is limited by off-axis coma aberrations, which we begin73

to characterize in this section. To measure the aberrations, we imaged a square within a USAF74

resolution target at 25 locations across the FiLM-Scope’s FOV, at the optimal on-axis focal plane75

for camera 20 (which is one of the four central cameras in the array). For all 48 cameras, we found76

the line-spread function (LSF) across all four sides of the squares in the 25 positions, and used77

these to characterize vertical and horizontal resolution.78

The results for camera 20 are shown in Figure S4. Figure S4a shows the images of the square79

target from the 25 positions within the FOV of camera 20, and the line-spread functions for the80
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Fig S3 Depth-of-field (DOF). DOF for the FiLM-Scope was estimated by first talking FWHM resolution measure-
ments, ϕ, at 13 axial planes for each of the 48 cameras, then fitting a normal curve to 1/ϕ. For many cameras, a portion
of the estimated DOF lies inside the glass of the primary lens, so the usable DOF may be smaller than the width of the
curve. a) Curves to estimate DOF from experimental FWHM measurements for cameras 0, 12, and 20. For camera
12, the entire DOF lies past the glass surface of the lens (black line), so the usable DOF is the same as the estimated
DOF. For cameras 0 and 20, a portion of the estimated DOF lies inside the glass surface of the lens, so the usable DOF
is smaller than the estimated DOF. b) Estimated (top) and usable (bottom) DOF for each of the 48 cameras. For the
two white squares, the DOF could not be accurately estimated from the available data for those cameras, so they are
left blank.

edges of these squares are shown in Figure S4b. While the edges in the center of the FOV have81

relatively symmetric LSFs (green inset), away from the center of the FOV the LSFs become asym-82

metric and vary based on the square’s location (red inset). To better visualize this, we found83

the full-width at half max (FWHM) value for each LSF, and further split this into top/bottom or84

7



left/right half-width values by finding the peak point in the LSF (see red and green insights in Fig-85

ure S4b). After finding these values at each of the 25 positions, we fit four 2D polynomials to give86

the left, right, top and bottom values over the full FOV. Those polynomials are shown in Figure87

S4c. From these plots, we can see that the system exhibits strong positive coma aberrations.88

In Figure S5, we show the resolution across the FOV of all 48 cameras. These values were89

found by averaging the FWHM of the LSF in the horizontal and vertical directions, and fitting90

the results across the FOV. From these plots, we can see that the resolution drops significantly91

away from the center of the FOV, suggesting that the system performance could be improved in92

the future by using custom designed lenses better optimized for this purpose.93
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Fig S4 Aberrations for reference camera. These plots show how aberrations were measured in a single camera. This
process was repeated for all 48 cameras. In all cameras, there are strong positive coma aberrations. a) To measure
resolution across the FOV, we translated a square target to 25 positions within the FOV of the camera, at the optimal
focal plane for the reference camera. b) We then computed the edge spread function (ESF) and line spread function
(LSF) across all four edges of the square, for each of the 25 positions. Top left: LSF/ESF plots for left edge of
the square, top right: LSF/ESF plots for right edge of the square, bottom left: LSF/ESF plots for top edge of the
square, bottom right: LSF/ESF plots for bottom edge of the square. From these, we can see that the LSF is quite
asymmetrical, depending on the square’s position within the FOV. In the green inset, for the center of the FOV, the
LSF is symmetrical, and the left and right half-widths are roughly the same width. In the red inset, for a square at the
bottom edge of the FOV, the LSF is unbalanced: the top half is considerably longer than the bottom half. c) These
plots were generated by taking the left, right, top, and bottom half-FWHM values for each of the 25 positions, and
fitting a polynomial to visualize those values over the full FOV. The system’s positive coma aberration is apparent.
These suggest that the point-spread-function will have a tail pointing towards the center of the FOV.
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Fig S5 Aberrations for all cameras. Here, we summarize the aberrations across the FOVs of all 48 cameras. These
were computed by averaging the vertical and horizontal FWHM values computed as shown in Figure S4 for camera
20, and fitting a polynomial to describe the resolution values across the full FOV. There is significant resolution fall-
off towards the edge of the FOV for all the cameras. This could be improved in the future through the use of a more
optimized or custom-designed primary lens. Scale bar is in millimeters.
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S2 System Calibration94

The flow diagram for system calibration is shown in Figure S6a. The process consists of five steps,95

which are briefly described here. The full calibration code with example datasets is available on96

the GitHub page.97

Step 1: Acquire Graph Images: To perform calibration, we acquire images of a piece of98

graph paper, which is held flat against a sheet of glass. The graph is translated axially away from99

the primary lens through the DOF of the system, in steps of 1 mm, while acquiring a snapshot100

image at each step. Example images are shown in Figure S6b.101

Step 2: Extract Vertex Locations: Next, we extract all the vertex locations from each of the102

graph images. This is currently done with a custom script, which can successfully localize both103

in-focus and aberrated vertices. The calibration is most successful when the majority of vertices104

are identified, but the procedure has enough redundancy that the results are adequate even when105

some vertices are missed.106

Step 3: Intra-camera alignment: The vertex locations extracted in Step 2 must be matched107

between planes to fit polynomial coefficients for Si,x(p) and Si,y(p) (as described in the Methods108

section of the main text). To match vertices, we assume the spacing between different vertices109

is much larger than the amount a single vertex will shift between images at adjacent planes. Af-110

ter matching the vertices between planes, we fit two lines, with slopes mx and my in units of111

pixels/plane, to describe how far the image of the vertex shifted in x and y when the graph was112

translated axially between planes. The slopes are then converted to pixels/mm, using the known113

translation of the graph between snapshots in Step 1.114
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Finally, we can fit coefficients for the polynomial equations Si,x(p) and Si,y(p) (see Equations115

8, 9). This is done via least squares fit, where the vertex locations on the reference plane are taken116

as the independent variable, and the slopes mx and my are the dependent variables. The red and117

blue insets from Figure S6b show an example outcome of this step: the extracted vertex locations118

are plotted in red, the fit lines with slopes mx and my are shown in orange, and the outputs of the119

equations Si,x(p) and Si,y(p) are shown in blue. From this plot, we can see strong agreement be-120

tween the orange and blue lines, suggesting that our calibration approach is successfully capturing121

the physics of the FiLM-Scope.122

Step 4: Inter-camera alignment Using the same vertices extracted in Step 2, we can then123

calibrate for the FOV shift between cameras. Note that in an ideal Fourier Light Field system, there124

would be no FOV shift at the object plane. However, to account for misalignment in this system, it125

is important to complete this calibration step. We begin by selecting the snapshot acquired closest126

to the object plane of the system (typically the plane most in focus for the central array camera),127

then matching the vertices between the 48 images. This is done by first manually selecting a single128

matching point in all 48 images, then using that approximate FOV shift to find the precise shift129

between vertices.130

Similar to step 2, we perform a least squares fit to find the polynomial coefficients for the131

equations Oi,x(p) and Oi,y(p) (Equations 10, 11). The independent variable is the vertex location132

in the image from camera i, and the dependent variable is the pixel shift between the vertex location133

in camera i and its location in the reference camera. An example outcome of this calibration step134

is shown in Figure S6c. The left graph shows the FOV shift between the center of each camera and135

the reference camera, while the red, blue, and green insets highlight how the shift varies across the136
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FOV of a camera.137

Step 5: Generate Dense Mappings After steps 1-4 are complete, the information from intra-138

and inter-camera calibration can be used to compute dense mappings during reconstruction.139

For each camera, we compute maps to give both the “shift slopes” encoded by Sx and Sy and140

the “inter-camera shifts” encoded by Ox and Oy. We will refer to the shift slope maps as Ms, and141

the inter-camera maps as Mc. These maps are formed by computing the values for Si(p) and Oi(p)142

for each pixel location p = (px, py). The outcome of this step is 48 x 4 maps: Mc,i,x, Mc,i,y, Ms,i,x,143

Ms,i,y for each camera i.144

Because of how back projection is performed in our algorithm using Pytorch’s145

torch.nn.functional.grid sample function (see Appendix C and Equation 19 in the main text), these146

maps must be warped to the perspective of the reference camera, to give the values for Ŝ(p) and147

Ô(p). Each of the four warped maps M̂ (M̂c,i,x, M̂c,i,y, M̂s,i,x, or M̂s,i,y) is computed by warping148

the corresponding map M with grid sample using Mc.149

At the end of calibration, all key information is saved in a single calibration file, which is stored150

alongside the acquired image datasets. Along with the calibration results, we store parameters151

including the pixel pitch and size of the graph target used in calibration, which can be used to152

calculate magnification.153

S3 Reconstruction Implementation Details154

The full calibration and reconstruction code is available on GitHub, alongside example datasets.155

Here, we highlight a few key features of the pipeline that were not described in the main text.156

13



Fig S6 Calibration. a) Flow-chart for the calibration procedure, including both intra-camera calibration to find
coefficients for the “shift ratios” Si,x(p) and Si,y(p), and inter-camera calibration to find coefficients for the “inter-
camera shifts” Oi,x(p) and Oi,y(p). b) Left: example of 5 snapshots of graph target acquired at distinct axial planes,
spaced 1 mm apart. Right: zoom-in on three individual images of the graph. In each, the locations of vertices from
the snapshots at different planes are shown in red. The line fit between the shifted locations for a single vertex is
shown in yellow, and the output of Si with the fit polynomial coefficients is shown in blue. c) Results of inter-camera
calibration (intra-camera calibration is shown in the main text, Figure 2). Left: vectors showing average value of Oi

for each camera. Right: For three cameras, plots of how Oi(p) changes across the camera’s FOV.

S3.1 Key arguments157

To ensure optimal reconstrucion results and GPU utilization, a number of arguments can be speci-158

fied by the user in the configuration file. While most of these were held constant for samples shown159

in this work, we highlight a few of the arguments that are most frequently modified between sam-160
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ples.161

Height range: Prior to the start of reconstruction, the user must specify an approximate height162

range for the object. This will determine the depth through which the initial back-projection vol-163

ume is formed (see main text Figure 2). Currently, this height range is selected manually. This is164

done by forming a digital z-stack of the image, and identifying the height range over which fea-165

tures are in focus. In future iterations, this could be automated by using a focus metric to roughly166

identify the top and bottom extents of the object from the digital z-stack.167

Number of Planes in Volume: The spacing between planes in the back-projection volume168

is key in determining the precision of the reconstruction, and should generally be matched to the169

expected axial resolution. However, it often makes sense to use a smaller number of planes to save170

GPU space, particularly when reconstructing over a large depth. The number of planes is specified171

by the user in the configuration file, and should be a multiple of 32 when using a U-Net with 4172

max-pool layers.173

Crop information: In many instances, image reconstruction is performed in cropped seg-174

ments, either due to limited space on the GPU, or because the sample does not fill the field-of-view175

of the system. Cropping is handled by the algorithm, to ensure the calibration maps are properly176

matched to the cropped section of the image. The user can manually specify cropping information177

as an argument. The crop center location, width, and height are all specified in normalized units.178

When the dataset is loaded, these are converted to pixels, based on the down-sampling level being179

used, and adjusted to ensure compatibility with the U-Net architecture.180
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Estimated height: Particularly when working with cropped images, providing an estimated181

height can ensure more complete reconstruction results. Because the image of an object shifts182

based on its height, if the same crop location is used in all 48 images, there may be limited overlap183

between their respective FOVs. This can be compensated for by providing an approximate esti-184

mated height, which is used to select the cropped regions for each image. Currently, this value185

defaults to the center of the provided height range, but it can also be manually specified in the186

configuration file.187

Downsample amount: While the most precise reconstructions are generally achieved by per-188

forming reconstruction with full resolution images, the reconstruction time can be sped up consid-189

erably by downsampling the images. Additionally, to increase frame rate, videos may be acquired190

with pixel binning. For many samples, this may only marginally reduce the precision of the recon-191

struction results. The desired downsample amount can be specified by the user in the configuration192

file, and the calibration information will be appropriately matched when the dataset is loaded.193

U-Net architecture: The main network in our code is a 3D U-Net. The architecture of this U-194

Net can be adjusted (including the number of layers, the channels per layer, and the stride-length in195

all 3 dimensions). For most samples, to achieve the best results, we used a network with 4 down-196

sampling steps, with 2 x 2 x 2 stride length. We used 8 convolution channels in the first layer,197

and 16 in all subsequent layers. While this was considerably fewer channels than in the original198

MVS-Net,33–35 we found that this allowed us to save GPU space without reducing reconstruction199

quality.200

Rectification: By default, the depth maps produced by this algorithm are aligned with the201
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image from the reference camera/viewpoint. However, the maps can also be produced to align202

with a rectified viewpoint along the optical axis (i.e. with S(p) = 0). In general, this approach203

works better for reconstructing the heights of small features with high precision, but may produce204

worse results for samples with occlusions.205

S3.2 Reconstruction Dataset206

To form the reconstruction dataset, the images are loaded, then cropped and normalized according207

to arguments specified by the user. The calibration maps are similarly computed and cropped.208

First, the crop center, height, and width specified in normalized units are converted to pixels,209

then rounded to ensure compatibility with the U-Net (i.e., the crop height and width in pixels must210

be divisible by 32 when we are using a 4 layer U-Net with stride length of 2 in x and y).211

Next, we need to identify the crop center for all the non-reference cameras. This is done212

to maximize the amount of field-of-view overlap between all the cropped images. For a given213

estimated height hest (provided by the user, as described above) and center pixel for the crop from214

the reference camera pref , the center pixel for the crop from camera i would be:215

pi = pref + hest[Sref (pref )− S ′
i(pref )]−O′

i(pref ) (S6)

which is drawn from the forward projection equation, Equation 24. All the images are then216

cropped according to their individual crop center and the provided crop height and width. If the217

crop extends outside the bounds of a given image, the space is padded with zeros, and a binary218

mask is saved alongside the image to prevent the padded region from being used when computing219

loss.220
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Finally, the “inter-camera shift” and “shift slope” maps (S2) are generated, cropped, and re-221

normalized. The warp function used in this work requires maps to be normalized from (-1, 1)222

according to the size of the image being warped, so we begin this step by cropping the maps223

according to the center pixels pi from above, then convert the shift amounts from units of pixels to224

normalized units according to the size of the cropped images. We then adjust the inter-camera shift225

maps to account for the differences between the crop centers for individual images. i.e. if Mc,i is226

the cropped and normalized inter-camera map for camera i, we would adjust it as follows:227

Mc,i = Mc,i − 2 · (pi − pref )/L (S7)

where L is the length (height or width) of the cropped image in pixels, and pi and pref are the228

center pixel of the crop for image i and the reference image, respectively.229

S3.3 Patching for Full Resolution Reconstruction230

Height maps shown in this work were generated by running our reconstruction algorithm on 12,231

24, and 48 GB GPUs. Even the 48 GB GPU is not large enough to reconstruct a full resolution232

height map over the full FOV and depth of an object in a single pass. The amount of space needed233

for reconstruction depends on a few factors:234

1. The depth of the object. To achieve the highest quality results, we need small spacing235

between the planes in our back-projected volume (typically 50-200 µm when using full resolution236

images). This can result in prohibitively large volumes when working with objects with large237

height variation. For instance, to reconstruct over a 1 cm tall object with 100 µm spacing between238

planes, we would need 1 cm/100 µm = 100 planes.239

18



2. The number of pixels in the image.Cropping or binning the image reduces the number of240

pixels and the space needed on the GPU.241

3. Architecture of the U-Net. While this was held fairly constant in this work, for some242

objects it may be possible to adjust the U-Net architecture to save space, without impacting the243

quality of the reconstructions.244

4. The number of cameras used in the reconstruction. The number of cameras used has only245

has a small impact on the GPU space needed, since all images are summed into a single volume at246

the beginning of reconstruction. The individual images are only used when computing the loss, so247

the space required to store them is nearly negligible compared to the space required by the volume.248

To achieve full resolution reconstructions over the full field-of-view of the system, we can249

run the algorithm on patches of the image, then tile these patches together to achieve a complete250

height map. The patching can be completed in one of two ways. In the first method, high res-251

olution patches are reconstructed over the full field-of-view using the described algorithm, then252

tiled together. The number of patches needed when using this approach is dependent on the height253

variations within the sample. If the sample is relatively flat or has gradual height changes, we254

can use a smaller number of patches, as the height over which the back-projection volume must255

be formed can be reduced. However, if the object has sharp height changes, we will need to use256

a larger number of patches in order to allow for back-projection volumes with many planes. In257

future work, the process for selecting optimal patches for reconstruction can be automated, but as258

of this writing, it can be tedious to select the 3D bounds for each patch and reconstruction is time259

consuming.260

In the second approach, we first compute a low-resolution height map over the full FOV. Then,261
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high resolution patches are reconstructed using the low resolution map as a guide for the back-262

projection volume (see Equation 33). By using this approach, the number of patches needed in263

reconstruction can be drastically reduced, and the task of manually selecting patch bounds is elim-264

inated. This is because we only need to search a small volume a few hundred microns above265

and below the estimated height in the low resolution map. With this approach, we were able to266

resconstruct the full FOV of an image with only nine patches, using a 24 GB GPU.267

However, this approach has limitations. First, if the height value at a pixel was very inaccurate268

in the low resolution map, this will not be corrected in the high resolution version, since we only269

consider heights immediately above and below the originally estimated height. Second, very fine270

features that did not appear in the downsampled image may be missed in the higher resolution271

reconstruction, if they have significantly different heights from the surrounding features. Regard-272

less, this approach is currently an efficient way to generate high resolution height maps over the273

full FOV of the system.274

An example high resolution reconstruction is shown in Figure S7. We can compare the results275

using single-pass low resolution reconstruction with 4 x 4 downsampling, against a high resolution276

reconstruction made with nine patches. The high resolution reconstruction better highlights fine277

features, including small cracks in the knuckle and hairs on the skin surface.278

S3.4 Noise reduction through summing279

One benefit of our reconstruction approach is the ability to sum rectified images, Îi, from all 48280

cameras, to increase signal-to-noise ratio and contrast in the reference view. Additionally, since not281

all cameras are focused on precisely the same plane, the summed image may bring some features282

into focus which were blurred in the single image from the reference camera. Several examples of283
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Fig S7 Patching The left column shows a grayscale image from the reference camera of a human finger. The center
column shows the low resolution height map for the finger sample computed in a single pass with 4 x 4 downsampling.
The right column shows the height map for the sample computed at full resolution, using patching. The top row is the
full FOV image, the middle row is a cropped inset, and the bottom row shows the same inset after correcting for global
tilt. We can see that the full resolution reconstruction includes finer details – emphasizing ridges and small hairs on
the skin’s surface. However, the large structure of the finger curvature remains the same between the low and high
resolution versions. Scale bars are in millimeters.

this are shown in Figure S8.284
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Fig S8 Noise reduction through summing. During the course of the reconstruction algorithm, we rectify all 48
acquired images to the reference viewpoint. By summing all 48 of the rectified images, we can form an image
with improved signal-to-noise ratio and higher contrast. In both a) and b), the top row shows the summed rectified
images, while the bottom row shows the single reference image a) Image of a human knuckle, acquired with 4 x 4
downsampling. In the bottom image, the portion of the skin highlighted in the inset was outside the DOF for the
reference camera, creating a blurred image. By summing the 48 images, we can include information from cameras
where this region was better focused and get a resulting image with better focus for the fine features in this region. b)
Left: cropped patch of skin from the back of a human finger. Right: cropped portion of a rat skull. In both examples,
the summed image has slightly decreased noise, allowing some fine features to be more easily visualized. At the same
time, the focus is not as sharp in the top image.
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S4 Multi-exposure Fusion285

Fig S9 a) Images of ex-vivo rat skull acquired with a 16 camera FiLM-Scope, using three different exposure levels. b)
Left: fused image using all three exposure levels together. Right: Reconstructed height map.

Here, we show how multi-exposure image fusion can be used to reconstruct scenes with large286

differences in reflectance and shadowing, as often occurs in surgical settings with reflective tis-287

sue and metallic tools. This was demonstrated using a modified FiLM-Scope setup with only 16288

cameras and some vignetting in the edge cameras.289

We first acquired three images of the same scene with different exposure levels (Figure S9a)290

and used the algorithm detailed in Mertens (2007)59 to fuse the images separately for each of291

the 16 views, before using the fused images to generate a height map (Figure S9b). This approach292
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produces reasonable results, although the reconstruction fails around sharp edges. For instance, the293

height map indicates that the handle of the tool is far wider than it appears in the image, because294

the fusion algorithm produces some ringing around these sharp edges. Moving forward, adapting295

the fusion algorithm or performing fusion on the images together during reconstruction could lead296

to improved results.297

S5 Comparison with Optical Coherence Tomography298

Fig S10 a) Image and reconstructed height map from FiLM-Scope system. b) Image and height map extracted from
OCT volume. The image included the maximum intensity along each A-scan in the volume, and the height map
indicates the indexed location of that maximum intensity. c) Aligned FiLM-Scope and OCT height maps. d) Cross
sections from the OCT volume, at locations shown in c. Over each cross section we show the FiLM-Scope and OCT
height maps at that plane.

To validate the accuracy of our approach, we imaged the same ex-vivo rat skull using both the299

FiLM-Scope and an Optical Coherence Tomography (OCT) system and compared the results.300
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The OCT engine consists of a Axsun Technologies 1060 nm swept-source laser (A12080125),301

with a scan depth of 3.7 mm. We scanned the skull using 1001 scan lines with 256 points each.302

After acquisition, we extracted a height map from the OCT volume by taking the index of the303

maximum point along each scan line. We then applied a binary mask to the height map to include304

only regions with adequately low variance, to ensure only the skull itself was considered, and305

not background regions. We acquired FiLM-Scope images of the same skull and performed 3D306

reconstruction over a region roughly corresponding to the region scanned by the OCT system.307

We then aligned the height map from the OCT acquisition to the height map reconstruted from308

the FiLM-Scope images. This was done by coursely aligning using manually chosen key points,309

then refining the alignment using an iterative closest point algorithm implemented in the open310

source Python package trimesh. We then removed points from both the OCT and FiLM-Scope311

height maps that were not within 50 µm laterally of a point in the other map. The results after this312

alignment are shown in Figure S10c and d. The root mean squared error between these two313

estimates was 33µm.314

S6 3D Results from Known Objects315

To test the accuracy of our reconstruction approach against objects with known heights, we imaged316

two 3D printed objects. The first was a cylinder printed on a MakerBot system (Figure S11a). The317

second is a pyramid printed on a Formlabs resin printer, then spray painted with white paint to318

create optical features (Figure S12a).319

The results from the cylinder are shown in Figure S11. To test the reconstruction algorithm, we320

selected a patch from within the FiLM-Scope image, generated a height map, then estimated the321

radius of the cylinder from the height map. The true radius of the 3D model was 34.0 mm, and our322
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predicted result was 34.1 mm, which is within the margin of error of the printer. After fitting the323

cylindrical shape, we subtracted the height of a perfect cylinder from our estimated height map, to324

visualize small height changes on the surface of the object (Figure S11d). By averaging this plot325

in the x and y directions, we can visualize the artifacts from the print filaments.326

Fig S11 Ground truth sample: 3D printed cylinder. a) Picture of sample being imaged. The black box indicates
the approximate region that was included in the FiLM-Scope image. b) Left: FiLM-Scope snapshot. Top right: inset
from reference camera’s image. Bottom right: Computed height map for the inset region. This height map was used
to estimate the radius of the cylinder. Our estimate was 34.1 mm, while the true value was 34.0 mm, putting our error
within the margin of error of the printer itself. c) We converted each pixel’s height to be the distance of that point from
a plane intersecting the cylinder, accounting for the tilt of the cylinder relative to the FiLM-Scope. The right height
map shows the estimated height of the imaged cylinder, while the left map shows the generated height for a perfect
cylinder with a radius of 34.1 mm. d). By subtracting the left height map in c from the right height map, we can see
the height of the surface of the cylinder. The plots to the bottom and right of the height map are the results of averaging
the map across its rows and columns. In these plots, we can see the printer artifacts. Particularly, in the bottom graph,
we can see the heights of individual filaments.

The results from the pyramid are shown in Figure S12. For this sample, we reconstructed327
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over the full FOV with 4 x 4 downsampling, then performed 2D gaussian filtering on the height328

map, with σ = 4 pixels. The portion of the pyramid in the image FOV is over a centimeter tall,329

well outside our reported DOF of 3 mm, but we are still able to achieve a relatively accurate height330

reconstruction over its full depth. The height profile within the white box in Figure S12b, is plotted331

in the top panel of Figure S12c. We can clearly see the triangular shape over the full depth extent332

of the object. We then fit a line to the portion of the triangle highlighted in red. The bottom panel333

of Figure S12c shows the portion of the pyramid to the right of the red line, after subtracting out334

the fit line, with estimated height on the x-axis and the difference between the estimated height335

and the line of best fit on the y-axis. From this plot, we can see that as the object falls outside our336

reported DOF, the accuracy of the estimated height reduces significantly. It is worth noting that the337

trend is not random – the estimated values deviate further and further below the true value as the338

object is further outside the DOF. Thus, in the future, we can measure this trend and compensate339

for it in our calibration method, allowing us to achieve more accurate 3D results over a larger depth340

range.341
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Fig S12 Ground truth sample: pyramid. a) Top: sample to be imaged. This is a pyramid printed on a FormLabs
resin printer, then finely painted with white spray paint to add optical texture. Bottom: FiLM-Scope snapshot of
pyramid. b) Left: Single image of pyramid. Note that the pyramid is extending outside the DOF of the FiLM-Scope
around the edges of the FOV. Right: Estimated height map of the pyramid. We achieve a reasonable estimate of the
pyramid shape, even outside the bounds of our reported DOF. c) Cross sections of pyramid height map. Left: Plot of
cross section marked in white in b). The cross section is averaged over a width of 11 pixels. We used the portion of the
plot highlighted in red to fit a line to the pyramid’s slope, to compare how far our height estimation deviated from the
expected linear slope. Right: Difference between the line of best fit and the estimated height of the cross section. Note
the x-axis is now “height below the pyramid tip”. From this plot, we can see that as the object extends past the DOF of
the system, the estimated height becomes biased in one direction. In future versions of the reconstruction algorithm,
we can adjust the calibration model to account for this bias.
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S7 Sensor Synchronization342

Ensuring high levels of synchronization between cameras is important in avoiding motion artifacts343

when reconstructing 3D video of moving objects. The FiLM-Scope uses a version of the multi-344

camera array microscope (MCAM),44, 45 which synchronizes the micro-cameras using a shared345

FPGA. All of the sensors (AR1335, OnSemi) in the MCAM sit on a single PCB board and are346

triggered by the same signal from the FPGA. As a result, any delays in the start of image acquisition347

are due to latency in the PCB itself, which is estimated to be well under 1 µs.348

The sensors use rolling shutter image acquisition, which we can use to demonstrate the level349

of synchronization. We used an output trigger signal from the FPGA to flash an LED after the350

start of image acquisition. For this test, we used color image sensors with a GBRG bayer pattern,351

so we only considered every other row in the sensor, to ensure consistent light collection. When352

acquiring full resolution (3072 x 3072 pixel) images, the rolling shutter takes 96.8 ms, so the time353

between the start of each considered row is 96.8ms/(3072/2) = 63µs.354

An example result from these tests is shown in Figure S13. While the precision of this test is355

limited by the row readout time of the sensor, we can see that the level of precision is well under356

the 63 µs we can confidently claim using this approach.357
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Fig S13 Results from synchronization tests with FiLM-Scope sensors. a) Example image from a single sensor during
this test. Due to the rolling shutter of the sensor, only a portion of the sensor recorded signal from an LED triggered
immediately after the start of image acquisition. We can determine the time at which the sensor began image acquisi-
tion from which rows detected signal. b) Row intensity values from all 48 sensors during a single test. These values
were computed by averaging values along every other row of the sensor, giving a total of 3072 / 2 = 1536 rows. Left:
raw intensity values across all rows. Right: Cropped portion of the sensor, with intensity values normalized for their
maximum value on each sensor. From this image, we can see that the sensors are very tightly synchronized, well under
the 63 µs readout time between rows.
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S8 System Illumination358

Because 3D information encoding in Fourier light field imaging does not depend on a specific359

illumination scheme, the FiLM-Scope can be used with a wide range of illumination setups. In360

the future, this could include darkfield or fluorescent imaging. In this work, we used two different361

epi-illumination setups. The first was exterior epi-illumination with a flexible LED strip fixed to362

the front of the lens (Figure S14a). The second was internal epi-illumination from a large ring363

illuminator placed directly behind the primary lens (Figure S14b). Because of the limited working364

distance with our primary lens, it was difficult to evenly illuminate over the full surface of an object365

using the LED strip lighting. The ring illuminator provided far more even illumination, but left366

significant illumination artifacts on the images, as shown in Figure S14c. To compensate for this,367

before imaging, we acquire an illumination correction image with the illumination source turned368

on, but without a sample. We can then perform background subtraction to reduce the illumination369

artifacts in our final images. This approach does limit the dynamic range of the impacted pixels,370

and if the illuminator shifts during imaging, we cannot directly subtract the correction image from371

the acquired images. In the future, we will work towards an improved illumination setup, possibly372

by using crossed polarizers to reduce reflection artifacts from the illumination source.373
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Fig S14 Illumination. Two different illumination setups were used for the images shown in this work. a) Illumination
setup 1: external epi-illumination via flexible LED strips fixed to the front surface of the lens. 2) Illumination setup 2:
internal epi-illumination via a ring illuminator placed between the primary lens and the lens array. c) While internal
epi-illumination provides more even illumination over the sample surface, it produces significant artifacts. The left
panel shows these artifacts with no sample present, and the middle panel shows a snapshot of a human finger including
these artifacts. Before reconstruction, the artifacts are removed from the snapshots, by subtracting the left set of images
from the middle set of images. The result is shown in the right panel. However, this still limits the dynamic range of
the affected pixels, so future versions of this system should have an improved illumination setup.
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S9 Camera Ablation Study374

In order to inform the design of future FiLM-Scopes optimized for specific surgical or non-surgical375

applications, we studied the impact of the placement and number of cameras on 3D reconstruction376

for a given sample. In general, the number of perspectives needed for successful 3D reconstruc-377

tion of an object from multi-view images is both algorithm and sample dependent. Very dense378

or complex objects, particulary non-convex objects, may require many such images, while simple379

or sparse samples (such as triangulation of a small number of fluorescent particles), may be done380

with as few as 2 or 3 perspectives.41 In addition to the absolute number, the placement of cam-381

eras is critical for successful 3D reconstruction. The axial resolution of the system is proportional382

to the angular separation of cameras (see Table 2 in the main text), so a small number of angu-383

larly separated cameras can allow for high resolution 3D reconstructions for simple samples. In384

the FiLM-Scope architecture, there are drawbacks to imaging with a large number of cameras -385

streaming from many cameras leads to lower frame rates and requires a primary lens with a larger386

diameter, increasing the size and weight of the system. Thus, it is important to carefully consider387

the number and placement of cameras when designing a system for a particular use case.388

To demonstrate how the number and arrangement of cameras used can impact the accuracy and389

precision of 3D reconstruction, we used the FiLM-Scope to acquire images of two samples: a small390

rock with a textured surface and significant height variation, and a thin microstamp covered with391

50 µm tall pillars. For each sample, we performed multiple 3D reconstructions from the acquired392

snapshot, using a different subset of cameras for each run, and compared the results.393

For the rock sample, we chose five patches of 100 x 100 pixels from within the image, and per-394

formed 3D reconstruction on each of these patches with eight different subsets of the 48 cameras,395
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including with all 48 cameras to serve as a pseudo-ground truth. The errors between these height396

maps and the pseudo-ground truth height maps are summarized in Figure S16b. As expected, when397

we used smaller subsets of cameras with worse theoretical axial resolution, the MSE of our recon-398

structed height maps increased. For subsets with a small number of cameras but large angular399

disparity between views (and improved theoretical axial resolution), some patches achieved 3D400

reconstructions with low MSE compared to the pseudo-ground truth, while other runs partially or401

fully failed to converge, leading to very inaccurate height maps (Figure S16b). It is worth noting402

that those results could likely be improved by using an alternative method to provide an initial403

estimate of the object’s height, such as using depth-from-focus cues or performing a preliminary404

height reconstruction at a lower resolution. These results indicate that having many cameras may405

be useful for objects with large height changes and complex surfaces.406

For the microstamp with 50 µm pillars, we performed 3D reconstruction on a single 608 x 608407

pixel patch from within the image, using eleven different camera subsets. From each reconstruc-408

tion, we pulled height values from 24 lines of roughly 24 pillars each, and identified the peaks and409

troughs along these lines to find the estimated heights of the pillars. We then created a histogram410

of the peak and trough height distrubtions, and assessed the standard deviations of the two distri-411

butions (which would ideally be small), and the distance in micrometers between the center of the412

two distributions (which should match the height of the pillars, 50 µm). This procedure is shown413

in Figure S15.414

We repeated this procedure for several camera subsets, 9 of which are shown in Figure S17.415

First, in the top row, we compared camera subsets with the same maximum stereo sepearation, but416

different numbers of cameras. Unlike the rock sample, reconstructions with angularly separated417

sets of down to four cameras showed comparable results to the reconstruction with all 48 cameras.418
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Quality began to decline when we used only three cameras. This is likely because the sample is419

nearly flat, so the algorithm can converge more easily while still differentiating fine features on420

the surface. In the bottom row, we considered gradually more compact camera subsets of adjacent421

cameras, shown in the top row of Figure S17. Similar to the rock sample, we see gradually worse422

performance for smaller subsets of adjacent cameras: the reconstruction with all cameras shows423

an average separation between peak and trough heights of 46 µm, while the reconstruction with 3424

x 3 cameras yields a less accurate estimate of 79 µm. In the reconstruction from 2 x 2 cameras, we425

were not able to successfully identify peaks and troughs in the extracted lines.426

Going into the future, we can test the accuracy of 3D reconstructions from the FiLM-Scope on427

specific tissue types, to determine the architecture that is needed for different surgical settings.428

Fig S15 Performance assessment with microstamp. a) Microstamp sample. The surface of the stamp is covered with
50 µm tall pillars, spaced 100 µm apart. Top: image of microstamp showing width of pillars. Bottom: FiLM-Scope
image of the microstamp. 3D reconstructions were performed with different camera subsets on the region shown in the
cropped inset. b) We reconstructed a height map for the microstamp (top right) then extracted the heights of 24 rows
of pillars, highlighted in red in the image on the top right, and identified the peaks and troughs along those lines. The
estimated height along a single row of pillars is shown in the bottom left plot. Peaks are marked in blue, and troughs
are marked in red. We can then histogram the peak and trough heights to assess system performance (bottom right).
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Fig S16 Camera ablation with rock sample. This figure shows the results of performing reconstructions with
different numbers of cameras. The red and black grids indicate which cameras were used in a given reconstruction.
Cameras shown in red were used, while those in black were omitted. a) Image of rock sample. Top: top and side view
of rock. Bottom: FiLM-Scope image of rock. The inset shows an example patch of the image on which reconstruction
was performed. We repeated the 3D reconstruction with each camera subset for five such patches.b) Example height
maps of a single patch for four camera subsets. The pseudo-ground truth reconstruction done with all 48 cameras
is on the top left. The reconstructions with 5 x 5 and 2 x 2 cameras (top right and bottom left, respectively) retain
the same general height map, but both are noisier than the reconstruction with all cameras. On the bottom right, the
reconstruction with five spread out cameras has a large region that failed to converge, resulting in a very inaccurate
height map.c) Using the reconstructions with all cameras as a pseudo-ground truth, we took the mean absolute error
between the pseudo-ground truth height map and the height map reconstructed from each camera subset. We can see
that for the first five subsets, the errors increase with increasing axial resolution. For the two camera subsets on the
right of the plot, some patches achieved reconstructions with very low error. However, others not included on this plot
failed to converge.
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Fig S17 Camera ablation study with microstamp In this figure, we repeated the procedure shown in Figure S15 and
show the results for 9 different camera subsets. a) Comparison of camera subsets with different numbers of cameras
but equal stereo disparity. We see similar height map quality from 25 down to only 4 cameras. There is a noticeable
drop in precision when only using 3 cameras. b) Comparison of gradually more compact subsets of adjacent cameras.
6x8, 5x5, and 4x4 camera subsets all retain high quality 3D reconstructions, with a noticeable drop in quality for 3x3
cameras. The reconstruction with 2x2 cameras failed to converge, and we cannot distinguish individual pillars in the
resulting height map.
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